National Repository of Grey Literature 2 records found  Search took 0.02 seconds. 
Magnetic shape memory alloys - ab initio approach
Heczko, Martin ; Šesták, Petr (referee) ; Zelený, Martin (advisor)
This Bachelor’s thesis is focused on theoretical study of magnetic shape memory alloys based on Ni2MnGa using ab initio calculations of electronic structure within the projector augmented wave method. In particular, the effect of increasing concertation of manganese instead of gallium was studied on total-energy and magnetic moment profiles along the tetragonal deformation path between austenite phase with cubic L21 structure and phase of nonmodulated martensite. Further, the effect of manganese atoms distribution within the gallium sublattice was studied as well as changes of this distribution under applied tetragonal deformation. At last but not at least, the elastic constants for austenitic and martensitic structures of studied alloys were calculated. The results show that the non-modulated martensite stabilized with increasing concentration of manganese, because its total energy decreased. The energetic barrier between austenitic and martensitic structures also decreased, which means the metastable austenite will change to unstable.
Magnetic shape memory alloys - ab initio approach
Heczko, Martin ; Šesták, Petr (referee) ; Zelený, Martin (advisor)
This Bachelor’s thesis is focused on theoretical study of magnetic shape memory alloys based on Ni2MnGa using ab initio calculations of electronic structure within the projector augmented wave method. In particular, the effect of increasing concertation of manganese instead of gallium was studied on total-energy and magnetic moment profiles along the tetragonal deformation path between austenite phase with cubic L21 structure and phase of nonmodulated martensite. Further, the effect of manganese atoms distribution within the gallium sublattice was studied as well as changes of this distribution under applied tetragonal deformation. At last but not at least, the elastic constants for austenitic and martensitic structures of studied alloys were calculated. The results show that the non-modulated martensite stabilized with increasing concentration of manganese, because its total energy decreased. The energetic barrier between austenitic and martensitic structures also decreased, which means the metastable austenite will change to unstable.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.